Algebraic Topology : midterm

1. Suppose a simplicial complex structure on a closed surface of Euler characteristic χ has v vertices, e edges, and f faces, which are triangles. Show that $e=3 f / 2, f=2(v-\chi)$, $e=3(v-\chi)$, and $e \leq v(v-1) / 2$. Deduce that $6(v-\chi) \leq v^{2}-v$. For the torus, conclude that $v \geq 7, f \geq 14$, and $e \geq 21$.
Remark: In fact, for the torus, the minimum values $(v, e, f)=(7,14,21)$ can be realized by a simplicial structure on the torus. You are not asked to show this.
2. The degree of a homeomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ can be defined as the degree of the extension of f to a homeomorphism of the one-point compactification S^{n}. Using this notion, show that \mathbb{R}^{n} is not homeomorphic to a product $X \times X$ when n is odd.
Hint: Assuming $\mathbb{R}^{n}=X \times X$, consider the homeomorphism f of $\mathbb{R}^{n} \times \mathbb{R}^{n}=X \times X \times X \times X$ that cyclically permutes the factors, $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{2}, x_{3}, x_{4}, x_{1}\right)$.
3. Let \mathbb{R}^{n} be the union of two open subsets U and V. Show the following.
(a) If U and V are path connected, then $U \cap V$ is path connected.
(b) If any two of the sets $\pi_{0}(U), \pi_{0}(V)$ and $\pi_{0}(U \cap V)$ are finite, then the third is also finite. Moreover, we have

$$
\left|\pi_{0}(U \cap V)\right|+\left|\pi_{0}(U \cup V)\right|=\left|\pi_{0}(U)\right|+\left|\pi_{0}(V)\right|
$$

where $|X|$ means the cardinality of the set X.
(c) Suppose $x, y \in U \cap V$ can be connected by a path in U and by a path V, then x and y can be connected by a path in $U \cap V$.
Hint: use homology theory. On the other hand, can you prove these statements directly from the definition of path components without the use of homology?
4. Let $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ be an open covering of X and $\left(Y_{1}, Y_{2}, \cdots Y_{n}\right)$ be an open covering of Y. Suppose $f: X \rightarrow Y$ is a continuous map such that $f\left(X_{i}\right) \subset Y_{i}$, and moreover the restriction

$$
f: \cap_{i \in A} X_{i} \rightarrow \cap_{i \in A} Y_{i}
$$

induces an isomorphism on homology for each subset $A \subset\{1,2, \cdots, n\}$. Show that $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$ is an isomorphism for all n.
5. The Borsuk-Ulam theorem states that: any odd continuous map $f: S^{n} \rightarrow S^{n}$ must have odd degree. Here we say f is odd if $f(-x)=-f(x)$ for all $x \in S^{n}$. Let us assume the Borsuk-Ulam theorem throughout this exercise.
(1) Prove that there does not exist an odd continuous map $g: S^{n} \rightarrow S^{n-1}$. Here again g is odd means that $g(-x)=-g(x)$.
(2) Prove that for every continuous map $h: S^{n} \rightarrow \mathbb{R}^{n}$, there exists a point $x \in S^{n}$ with $h(x)=h(-x)$. This is often illustrated by saying that at any given moment, there are always two antipodal places on earth with equal temperatures and equal air pressures. (Hint: use part (1))
(3) Prove that if $S^{n}=F_{1} \cup F_{2} \cup \cdots \cup F_{n+1}$ where each F_{j} is a closed subset of S^{n}, then at least one of the sets F_{j} contains a pair of antipodal points. (Hint: consider distance functions to F_{j}, and use part (2))
(4) In previous parts, we have seen that $(1) \Longrightarrow(2) \Longrightarrow(3)$. In fact, one can also show $(3) \Longrightarrow(1)$ as follows. Observe that there exist closed subsets F_{1}, \cdots, F_{n+1} of S^{n-1} such that $S^{n-1}=F_{1} \cup F_{2} \cdots \cup F_{n+1}$ and no F_{i} contains a pair of antipodal points. (For example, consider the standard n-dimensional simplex Δ^{n}, which is inscribed in a sphere S^{n-1}. Now take radial projection the boundary $\partial \Delta^{n}$ of Δ^{n} to this sphere. Note that $\partial \Delta^{n}$ consists of $(n+1)$ faces. Let F_{i} be the image of a corresponding face.) Use this observation to show that (3) \Longrightarrow (1).
(5) Here is a slightly different but equivalent version of part (3). Prove that if $S^{n}=A_{1} \cup A_{2} \cup \cdots \cup A_{n+1}$ where each A_{j} is either open or closed in S^{n}, then at least one of the sets A_{j} contains a pair of antipodal points. (Hint: use part (3))

