
Algebraic Topology : midterm

1. Suppose a simplicial complex structure on a closed surface of Euler characteristic χ has
v vertices, e edges, and f faces, which are triangles. Show that e = 3f/2, f = 2(v − χ),
e = 3(v−χ), and e ≤ v(v−1)/2. Deduce that 6(v−χ) ≤ v2−v. For the torus, conclude
that v ≥ 7, f ≥ 14, and e ≥ 21.

Remark: In fact, for the torus, the minimum values (v, e, f) = (7, 14, 21) can be realized
by a simplicial structure on the torus. You are not asked to show this.

2. The degree of a homeomorphism f : Rn → Rn can be defined as the degree of the
extension of f to a homeomorphism of the one-point compactification Sn. Using this
notion, show that Rn is not homeomorphic to a product X ×X when n is odd.

Hint: Assuming Rn = X×X, consider the homeomorphism f of Rn×Rn = X×X×X×X
that cyclically permutes the factors, f(x1, x2, x3, x4) = (x2, x3, x4, x1).

3. Let Rn be the union of two open subsets U and V . Show the following.

(a) If U and V are path connected, then U ∩ V is path connected.

(b) If any two of the sets π0(U), π0(V ) and π0(U ∩ V ) are finite, then the third is also
finite. Moreover, we have

|π0(U ∩ V )|+ |π0(U ∪ V )| = |π0(U)|+ |π0(V )|

where |X| means the cardinality of the set X.

(c) Suppose x, y ∈ U ∩ V can be connected by a path in U and by a path V , then x
and y can be connected by a path in U ∩ V .

Hint: use homology theory. On the other hand, can you prove these statements directly
from the definition of path components without the use of homology?

4. Let (X1, X2, · · · , Xn) be an open covering of X and (Y1, Y2, · · ·Yn) be an open covering
of Y . Suppose f : X → Y is a continuous map such that f(Xi) ⊂ Yi, and moreover the
restriction

f : ∩i∈A Xi → ∩i∈AYi
induces an isomorphism on homology for each subset A ⊂ {1, 2, · · · , n}. Show that
f∗ : Hn(X)→ Hn(Y ) is an isomorphism for all n.

5. The Borsuk-Ulam theorem states that: any odd continuous map f : Sn → Sn must have
odd degree. Here we say f is odd if f(−x) = −f(x) for all x ∈ Sn. Let us assume the
Borsuk-Ulam theorem throughout this exercise.

(1) Prove that there does not exist an odd continuous map g : Sn → Sn−1. Here again
g is odd means that g(−x) = −g(x).

(2) Prove that for every continuous map h : Sn → Rn, there exists a point x ∈ Sn with
h(x) = h(−x). This is often illustrated by saying that at any given moment, there
are always two antipodal places on earth with equal temperatures and equal air
pressures. (Hint: use part (1))



(3) Prove that if Sn = F1 ∪ F2 ∪ · · · ∪ Fn+1 where each Fj is a closed subset of Sn,
then at least one of the sets Fj contains a pair of antipodal points. (Hint: consider
distance functions to Fj, and use part (2))

(4) In previous parts, we have seen that (1) =⇒ (2) =⇒ (3). In fact, one can also
show (3) =⇒ (1) as follows. Observe that there exist closed subsets F1, · · · , Fn+1

of Sn−1 such that Sn−1 = F1 ∪ F2 · · · ∪ Fn+1 and no Fi contains a pair of antipodal
points. (For example, consider the standard n-dimensional simplex ∆n, which is
inscribed in a sphere Sn−1. Now take radial projection the boundary ∂∆n of ∆n

to this sphere. Note that ∂∆n consists of (n + 1) faces. Let Fi be the image of a
corresponding face.) Use this observation to show that (3) =⇒ (1).

(5) Here is a slightly different but equivalent version of part (3). Prove that if
Sn = A1 ∪ A2 ∪ · · · ∪ An+1 where each Aj is either open or closed in Sn, then
at least one of the sets Aj contains a pair of antipodal points. (Hint: use part (3))
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